o N7

4 ‘IJ‘ / . SOA
X/ ’,I)l')//.\
m),

N Q \ s AN
N ‘\ &\\\\w\ 2N ‘sQ\
RN N - S R
NIRRR NN R

UNIX

IN ANUTSHELL

A Desktop Quick Reference
Covers GNU/Linux, Mac OS X, and Solaris

O,RE"—LY® Arnold Robbins

16

The GNU make Utility

The make program is a long time mainstay of the Unix toolset. It automates the
building of software and documentation based on a specification of dependencies
among files; e.g., object files that depend upon program source files, or PDF files
that depend upon documentation program input files. GNU make is the standard
version for GNU/Linux and Mac OS X.

This chapter presents the following topics:

* Conceptual overview
* Command-line syntax
* Makefile lines

* Macros

* Special target names

* Writing command lines

For more information, see Managing Projects with GNU make and GNU Make: A
Program for Directing Recompilation, both listed in the Bibliography.

The software download site for GNU make is ftp://ftp.gnu.org/gnu/makel.

Conceptual Overview

The make program generates a sequence of commands for execution by the Unix
shell. It uses a table of file dependencies provided by the programmer, and with
this information, can perform updating tasks automatically for the user. It can
keep track of the sequence of commands that create certain files, and the list of
files or programs that require other files to be current before they can be rebuilt
correctly. When a program is changed, make can create the proper files with a
minimum of effort.

745

Each statement of a dependency is called a rule. Rules define one or more targets,
which are the files to be generated, and the files they depend upon, the prerequi-
sites or dependencies. For example, prog.o would be a target that depends upon
prog.c; each time you update prog.c, prog.o must be regenerated. It is this task that
make automates, and it is a critical one for large programs that have many pieces.

The file containing all the rules is termed a makefile; for GNU make, it may be named
GNUmakefile, makefile or Makefile, in which case make will read it automatically, or
you may use a file with a different name and tell make about it with the -f option.

Over the years, different enhancements to make have been made by many vendors,
often in incompatible ways. POSIX standardizes how make is supposed to work.
Today, GNU make is the most popular version in the Unix world. It has (or can
emulate) the features of just about every other version of make, and many Open
Source programs require it.

This chapter covers GNU make. Commercial Unix systems come with versions
derived from the original System V version; these can be used for bootstrapping
GNU make if need be. On the x86 versions of Solaris 10, you can find GNU make in
/ust/sfw/bin/gmake. It isn’t available on the Sparc version, although it can be easily
bootstrapped with the standard version of make in /usr/ccs/bin.

Command-Line Syntax

The make program is invoked as follows:
make [options] [targets] [macro definitions]

Options, targets, and macro definitions can appear in any order. The last assign-
ment to a variable is the one that’s used. Macro definitions are typed as:

name=string
or
name:=string

For more information, see the section “Creating and Using Macros,” later in this
chapter.

If no GNUmakefile, makefile, or Makefile exists, make attempts to extract the most
recent version of one from either an RCS file, if one exists, or from an SCCS file, if
one exists. Note though, that if a real makefile exists, make will not attempt to extract
one from RCS or SCCS, even if the RCS or SCCS file is newer than the makefile.

Options

Like just about every other GNU program, GNU make has both long and short
options. The available options are as follows:

-b Silently accepted, but ignored, for compatibility with other versions of make.

-B, --always-make
Treat all targets as out of date. All targets are remade, no matter what the
actual status is of their prerequisites.

746 | (Chapter16: The GNU make Utility

-Cdir, --directory=dir
Change directory to dir before reading makefiles. With multiple options, each
one is relative to the previous. This is usually used for recursive invocations of
make.

-d Print debugging information in addition to regular output. This information
includes which files are out of date, the file times being compared, the rules
being used to update the targets, and so on. Equivalent to --debug=a.

--debug[=debug-opt]
Print debugging information as specified by debug-opt, which is one or more
of the following letters, separated by spaces or commas. With no argument,
provide basic debugging.

a All Enable all debugging.

b Basic. Print each target that is out of date, and whether or not the build was
successful.

i Implicit. Like basic, but include information about the implicit rules
searched for each target.

j Jobs. Provide information about subcommand invocation.

Makefiles. Enable basic debugging, and any of the other options, for
description of attempts to rebuild makefiles. (Normally, make doesn’t print
information about its attempts to rebuild makefiles.)

v Verbose. Like basic, but also print information about which makefiles were
read, and which prerequisites did not need to be rebuilt.

-e, --environment-overrides
Environment variables override any macros defined in makefiles.

-f file, --file=file, --makefile=file
Use file as the makefile; a filename of - denotes standard input. -f can be
used more than once to concatenate multiple makefiles. With no -f option,
make first looks for a file named GNUmakefile, then one named makefile, and
finally one named Makefile.

-h, --help
Print a usage summary, and then exit.
-i, --ignore-errors
Ignore error codes from commands (same as . IGNORE).
-Idir, --include-dir=dir
Look in dir for makefiles included with the include directive. Multiple options
add more directories to the list; make searches them in order.

-j [count], --jobs[=count]
Run commands in parallel. With no count, make runs as many separate
commands as possible. (In other words, it will build all the targets that are
independent of each other, in parallel.) Otherwise, it runs no more than count
jobs. This can decrease the time it takes to rebuild a large project.

-k, --keep-going
Abandon the current target when it fails, but keep working with unrelated
targets. In other words, rebuild as much as possible.

Command-Line Syntax | 747

-1 [load], --load-average[=load], --max-load[=1oad]

-m

-n,

If there are jobs running and the system load average is at least load, don’t
start any new jobs running. Without an argument, clear a previous limit. The
load value is a floating point number.

Silently accepted, but ignored, for compatibility with other versions of make.

--dry-run, --just-print, --recon
Print commands but don’t execute (used for testing). -n prints commands
even if they begin with @ in the makefile.

Lines that contain $(MAKE) are an exception. Such lines are executed.
However, since the -n is passed to the subsequent make in the MAKEFLAGS
environment variable, that make also just prints the commands it executes.
This allows you to test out all the makefiles in a whole software hierarchy
without actually doing anything.

--no-print-directory

Don’t print the working directory as make runs recursive invocations. Useful if
-w is automatically in effect but you don’t want to see the extra messages.

-0 file, --assume-old=file, --old-file=file

Pretend that file is older than the files that depend upon it, even if it’s not.
This avoids remaking the other files that depend on file. Use this in cases
where you know that the changed contents of file will have no effect upon the
files that depend upon it; e.g., changing a comment in a header file.

-p, --print-data-base
Print macro definitions, suffixes, and built-in rules. In a directory without a
makefile, use env -i make -p to print out the default variable definitions and
built-in rules.

-g, --question
Query; return 0 if the target is up to date; nonzero otherwise.

-1, --no-builtin-rules
Do not use the default rules. This also clears out the default list of suffixes
and suffix rules.

-s, --quiet, --silent
Do not display command lines (same as . SILENT).

-S, --no-keep-going, --stop
Cancel the effect of a previous -k. This is only needed for recursive make invo-
cations, where the -k option might be inherited via the MAKEFLAGS
environment variable.

-t, --touch
Touch the target files, causing them to be updated.

-v, --version
Print version, copyright, and author information, and exit.

748 | (Chapter16: The GNU make Utility

-w, --print-directory
Print the working directory, before and after executing the makefile. Useful
for recursive make invocations. This is usually done by default, so it’s rare to
explicitly need this option.

--warn-undefined-variables
Print a warning message whenever an undefined variable is used. This is
useful for debugging complicated makefiles.

-W file, --assume-new=file, --new-file=file, --what-if=file
Treat file as if it had just been modified. Together with -n, this lets you see
what make would do if file were modified, without actually doing anything.
Without -n, make pretends that the file is freshly updated, and acts
accordingly.

Makefile Lines

Instructions in the makefile are interpreted as single lines. If an instruction must
span more than one input line, use a backslash (\) at the end of the line so that the
next line is considered a continuation. The makefile may contain any of the
following types of lines:

Blank lines
Blank lines are ignored.

Comment lines
A number sign (#) can be used at the beginning of a line or anywhere in the
middle. make ignores everything after the #.

Dependency lines
One or more target names, a single- or double-colon separator, and zero or
more prerequisites:

targets : prerequisites
targets :: prerequisites

In the first form, subsequent commands are executed if the prerequisites are
newer than the target. The second form is a variant that lets you specify the
same targets on more than one dependency line. (This second form is useful
when the way you rebuild the target depends upon which prerequisite is
newer.) In both forms, if no prerequisites are supplied, subsequent
commands are always executed (whenever any of the targets are specified).
For example, the following is invalid, since single-colon rules do not allow
targets to repeated:

PROBLEM: Single colon rules disallow repeating targets
whizprog.o: foo.h

$(CC) -c $(CFLAGS) whizprog.o

@echo built for foo.h

whizprog.o: bar.h
$(CC) -c $(CFLAGS) whizprog.o
@echo built for bar.h

Makefile Lines | 749

In such a case, the last set of rules is used and make issues a diagnostic.
However, double-colon rules treat the dependencies separately, running each
set of rules if the target is out of date with respect to the individual
dependencies:

OK: Double colon rules work independently of each other
whizprog.o:: foo.h

$(CC) -c $(CFLAGS) whizprog.o

@echo built for foo.h

whizprog.o:: bar.h
$(CC) -c $(CFLAGS) whizprog.o
@echo built for bar.h

No tab should precede any targets. (At the end of a dependency line, you can
specify a command, preceded by a semicolon; however, commands are typi-
cally entered on their own lines, preceded by a tab.)

Targets of the form library(member) represent members of archive libraries, e.g.,
libguide.a(dontpanic.o0). Furthermore, both targets and prerequisites may
contain shell-style wildcards (e.g., *.c). make expands the wildcard and uses
the resulting list for the targets or prerequisites.

Suffix rules

These specify that files ending with the first suffix can be prerequisites for
files ending with the second suffix (assuming the root filenames are the
same). Either of these formats can be used:

LSUffix.suffix:
.Suffix:

The second form means that the root filename depends on the filename with
the corresponding suffix.

Pattern rules

Rules that use the % character define a pattern for matching targets and
prerequisites. This is a powerful generalization of the original make’s suffix
rules. Many of GNU make’s built-in rules are pattern rules. For example, this
built-in rule is used to compile C programs into relocatable object files:

%.0 : %.C
$(CC) -c $(CFLAGS) $(CPPFLAGS) $< -0 $@

Each target listed in a pattern rule must contain only one % character. To
match these rules, files must have at least one character in their names to
match the %; a file named just .o would not match the above rule. The text
that matches the % is called the stem, and the stem’s value is substituted for
the % in the prerequisite. (Thus, for example, prog.c becomes the prerequisite
for prog.o.)

Conditional statements

atements that evaluate conditions, and depending upon the result, include
Stat ts that evaluat dit d depending upon th lt, includ
or exclude other statements from the contents of the makefile. More detail is
given in the section “Conditional Input,” later in this chapter.

750

| Chapter16: The GNU make Utility

Macro definitions
Macro definitions define variables: identifiers associated with blocks of text.

Variable values can be created with either =, :=, or define, and appended to
with +=. More detail is provided in the later section “Creating and Using
Macros.”

include statements
Similar to the C #include directive, there are three forms:

include file [file ...]
-include file [file ...]
sinclude file [file ...]

make processes the value of file for macro expansions before attempting to
open the file. Furthermore, each file may be a shell-style wildcard pattern, in
which case make expands it to produce a list of files to read.

The second and third forms have the same meaning. They indicate that make
should try to include the named lines, but should continue without an error if
a file could not be included. The sinclude version provides compatibility with
other versions of make.

vpath statements
Similar to the VPATH variable, the vpath line has one of the following three

forms:
vpath pattern directory ... Set directory list for pattern
vpath pattern Clear list for pattern
vpath Clear all lists

Each pattern is similar to those for pattern rules, using % as a wildcard char-
acter. When attempting to find a prerequisite, make looks for a vpath rule that
matches the prerequisite, and then searches in the directory list (separated by
spaces or colons) for a matching file. Directories provided with vpath direc-
tives are searched before those provided by the VPATH variable.

Command lines

These lines are where you give the commands to actually rebuild those files
that are out of date. Commands are grouped below the dependency line and
are typed on lines that begin with a tab. If a command is preceded by a
hyphen (-), make ignores any error returned. If a command is preceded by an
at sign (@), the command line won’t echo on the display (unless make is called
with -n). Lines beginning with a plus (+) are always executed, even if -n, -q, or
-t are used. This also applies to lines containing $(MAKE) or ${MAKE}. Further
advice on command lines is given later in this chapter.

Special Dependencies

GNU make has two special features for working with dependencies.

Library dependencies
A dependency of the form -1NAME causes make to search for a library file whose
name is either 1ibVAME.so or 1ibNAME.a in the standard library directories. This
is customizable with the .LIBPATTERNS variable; see the later section “Macros
with Special Handling” for more information.

Makefile Lines | 751

Order-only prerequisites

When a normal prerequisite of a target is out of date, two things happen.
First, the prerequisite (and its prerequisites, recursively) are rebuilt as needed.
This imposes an ordering on the building of targets and prerequisites. Second,
after the prerequisites are updated, the target itself is rebuilt using the accom-
panying commands. Normally, both of these are what’s desired.

Sometimes, you just wish to impose an ordering, such that the prerequisites
are themselves updated, but the target is not rebuilt by running its rules. Such
order-only prerequisites are specified in a dependency line by placing them to

the right of a vertical bar or pipe symbol, |:

target: normal-depl normal-dep2 | order-depl order-dep2

command

Dependency lines need not contain both. Le., you do not have to provide
regular dependencies if there are order-only dependencies as well; just place

the | right after the co

lon.

Here is an annotated example of an order-only dependency:

$ cat Makefile
all: target

prereqo:

First target is default, point to real target

How to make prereq0

@echo making prereqo

touch prereqo

prereql:

How to make prereql

@echo making prereql

touch prereql

prereq2: prereqo

prereq2 depends

@echo making prereq2

touch prereq2

target: prereql | prereq2

@echo making target

touch target

The order of creation is shown in Figure 16-1.

on prereq0

How to make target

| prereqo |

Figure 16-1. The order of creation

And here is the result of running make:

$ make
making prereql
touch prereqi

752 |

Chapter 16: The GNU make Utility

making prereqo
touch prereqo
making prereq2
touch prereq2
making target
touch target
This is normal and as expected. Now, let’s update one of the order-only prerequi-
sites and rerun make:
$ touch prereqo
$ make
making prereq2
touch prereq2

Note that target was not rebuilt! Had the dependency on prereq2 been a regular
dependency, then target itself would also have been remade.

Conditional Input

Conditional statements allow you to include or exclude specific lines based on
some condition. The condition can be that a macro is or is not defined, or that the
value of a macro is or is not equal to a particular string. The equivalence/
nonequivalence tests provide three different ways of quoting the values. Condi-
tionals may have an optional “else” part; i.e., lines that are used when the
condition is not true. The general form is as follows:

1fXXX test

lines to include if true
[else

lines to include if false]
endif

(The square brackets indicate optional parts of the construct; they are not to be
entered literally.) Actual tests are as follows:

Condition Meaning
ifdef macroname True if macroname is a macro that has been given a value.
ifndef macroname True if macroname is a macro that has not been given a value.

ifeq (vi,v2)
ifeq 'vi' 'v2' True if values v1 and v2 are equal.
ifeq "v1" "v2"

ifneq (vi,v2)

ifneq 'vi' 'v2' True if values v1 and v2 are not equal.

va"

ifneq "v1

For example:

whizprog.o: whizprog.c

ifeq($(ARCH),ENIAC) # Serious retrocomputing in progess!
$(CC) $(CFLAGS) $(ENIACFLAGS) -c $< -0 $@

else
$(CC) $(CFLAGS) -C $< -0 $@

endif

Makefile Lines | 753

Macros

This section summarizes creating and using macros, internal macros, macro modi-
fiers, macros with special handling, and text manipulation with macros and
functions.

Creating and Using Macros

Macros (often called variables) are like variables in a programming language. In
make, they are most similar to variables in the shell language, having string values
that can be assigned, referenced, and compared.

Defining macros

GNU make provides multiple ways to define macros. The different mechanisms
affect how make treats the value being assigned. This in turn affects how the value
is treated when the macro’s value is retrieved, or referenced. GNU make defines
two types of variables, called recursively expanded variables and simply expanded
variables, respectively. The various macro assignment forms are as follows:

name = value
Create a recursively expanded variable. The value of name is the verbatim text
on the right side of the =. If this value contains any references to other vari-
able values, those values are retrieved and expanded when the original
variable is referenced. For example:

bar = v1

foo = $(bar) Value of bar retrieved when foo’s value is referenced
x = $(foo) x is assigned ‘v1’

bar = v2

y = $(foo) y is assigned v2’

name := value
Create a simply expanded variable. The value is expanded completely, imme-
diately at the time of the assignment. Any variable references in value are
expanded then and there. For example:

bar = v1

foo := $(bar) foo is assigned ‘v1’

x = $(foo) x is assigned ‘v1’
bar = v2

y = $(foo) y is still assigned ‘v1’

A significant advantage of simply expanded variables is that they work like
variables in most programming languages, allowing you to use their values in
assignments to themselves:

x := $(x) other stuff

name += value
Append value to the contents of variable name. If name was never defined, +=
acts like =, creating a recursively defined variable. Otherwise, the result of +=
depends upon the type of name. If name was defined with =, then value is

754 | (Chapter16: The GNU make Utility

appended literally to the contents of name. However, if name was defined
with :=, then make completely expands value before appending it to the
contents of name.

name ?= value
Create recursively expanded variable name with value value only if name is
not defined. Note that a variable that has been given an empty value is still
considered to be defined.

define name
endef
Define a recursively expanded variable, similar to =. However, using define,

you can give a macro a value that contains one or more newlines. This is not
possible with the other assignment forms (=, :=, +=, ?=).

Macro values

Macro values are retrieved by prefixing the macro name with a $. A plain §$ is
enough for macros whose names are a single character, such as $< and $e@.
However, macro names of two or more characters must be enclosed in paren-
theses and preceded by a $. For example, $(CC), $(CPP), and so on.

Although it was not documented, the original V7 Unix version of make allowed the
use of curly braces instead of parentheses: ${CC}, ${RM}, and so on.” All Unix
versions and GNU make support this as well, and it is included in POSIX. This
usage was particularly common in makefiles in the BSD distributions. There is no
real reason to prefer one over the other, although long-time Unix programmers
may prefer the parentheses form, since that is what was originally documented.

Exporting macros

By default, make exports variables to subprocesses only if those variables were
already in the environment or if they were defined on the command line. Further-
more, only variables whose names contain just letters, digits, and underscores are
exported, as many shells cannot handle environment variables with punctuation
characters in their names. You can use the export directive to control exporting of
specific variables, or all variables. The unexport directive indicates that a partic-
ular variable should not be exported; it cancels the effect of a previous export
command. The command forms are as follows:

export
By itself, the export directive causes make to export all alphanumerically
named variables to the environment (where underscore counts as a letter
t00).

export var
Export variable var to the environment. The variable will be exported even if
its name contains nonalphanumeric characters.

* See the function subst (') in http://minnie.tuhs.org/UnixTree/V7/ust/src/cmd/make/misc.c.html.

Macros | 755

export var = value

export var := value

export var += value

export var ? value
Perform the kind of assignment indicated by the given operator (as described
earlier), and then export the variable to the environment.

unexport var
Do not export variable var to the environment. Cancels a previous export of
var (for example, from a separate, included makefile).

Overriding command-line macros

Normally, when a macro is defined on the command line, the given value is used,
and any value assigned to the macro within the makefile is ignored. Occasionally,
you may wish to force a variable to have a certain value, or to append a value to a
variable, no matter what value was given on the command line. This is the job of
the override directive.

override var = value

override var := value

override var += value

override var ? value

override define name

endef
Perform the kind of assignment indicated by the given operator (as described
earlier), and then export the variable to the environment.

The example given in the GNU make documentation, GNU Make: A Program for
Directing Recompilation, is forcing CFLAGS to always contain the -g option:

override CFLAGS += -g
Internal Macros

$? The list of prerequisites that have been changed more recently than the current
target. Can be used only in normal makefile entries—not suftix rules.

$@ The name of the current target, except in makefile entries for making libraries,
where it becomes the library name. (For 1ibguide.a(dontpanic.o), $@ is
libguide.a). Can be used both in normal makefile entries and in suffix rules.

$$@ The name of the current target. Can be used only to the right of the colon in
dependency lines. This is provided only for compatibility with System V make; its
use is not recommended.

$< The name of the current prerequisite that has been modified more recently than
the current target.

$* The name—without the suffix—of the current Frerequisite that has been modi-
fied more recently than the current target. Should be used only in implicit rules or
static pattern rules.

$% The name of the corresponding .o file when the current target is a library
module. (For 1ibguide.a(dontpanic.o), $% is dontpanic.o). Can be used both in
normal makefile entries and in suffix rules.

756 | Chapter16: The GNU make Utility

$" The list of prerequisites for the current target. For archive members, only the
member name is listed. Even if a prerequisite appears multiple times in a depen-
dency list for a target, it only appears once in the value of $*.

$+ Like $7, but prerequisites that appear multiple times in a dependency list for a
target are repeated. This is most useful for libraries, since multiple dependencies
upon a library can make sense and be useful.

$$ Aliteral $ for use in rule command lines: for example, when referencing shell
variables in the environment or within a loop.

$| The order-only prerequisites for the current target.

Macro Modifiers

Macro modifiers may be applied to the built-in internal macros listed earlier,
except for $$.

D The directory portion of any internal macro name. Valid uses are:

$(%D) $(ep)
$(*D) $$(@D)
$(<D) $("D)
$(?D) @(+D)
F The file portion of any internal macro name. Valid uses are:

$(%F) $(@F)
$(*F) $$(@F)
$(<F) $(F)
$(?F) @(+F)

Macros with Special Handling

CURDIR The current working directory. Set by make but not used by it, for use
in makefiles.

.LIBPATTERNS Used for finding link library names as prerequisites of the form
-1name. For each such prerequisite, make searches in the current direc-
tory, directories matching any vpath directives, directories named by
the VPATH variable, /1ib, /usr/1ib, and prefix/1ib, where prefix is
the installation directory for GNU make (normally /usr/local).

The default value of . LIBPATTERNS is 1ib%.so 1ib%.a. Thus make first
searches for a shared library file, and then for a regular archive
library.

MAKE The full pathname used to invoke make. It is special because
command lines containing the string $(MAKE) or ${MAKE} are always
executed, even when any of the -n, -q, or -t options are used.

MAKECMDGOALS The targets given to make on the command line.

MAKEFILE_LIST A list of makefiles read so far. The rightmost entry in the list is the
name of the makefile currently being read.

MAKEFILES Environment variable: make reads the whitespace-separated list of
files named in it before reading any other makefiles.
MAKEFLAGS Contains the flags inherited in the environment variable MAKE-

FLAGS, plus any command-line options. Used to pass the flags to
subsequent invocations of make, usually via command lines in a
makefile entry that contain $(MAKE).

MAKELEVEL The depth of recursion (sub-make invocation). Primarily for use in
conditional statements so that a makefile can act in one way as the
top-level makefile and in another way if invoked by another make.

Macros | 757

MAKOVERRIDES A list of the command-line variable definitions. MAKEFLAGS refers to
this variable. By setting it to the empty string:
MAKEOVERRIDES =

You can pass down the command-line options to sub-makes but avoid
passing down the variable assignments.

MAKESHELL For MS-DOS only, the shell make should use for running commands.

MFLAGS Similar to MAKEFLAGS, this variable is set for compatibility with other
versions of make. It contains the same options as in MAKEFLAGS, but
not the variable settings. It was designed for explicit use on command
lines that invoke make. For example:

mylib:
cd mylib 8% $(MAKE) $(MFLAGS)
The use of MAKEFLAGS is preferred.

SHELL Sets the shell that interprets commands. If this macro isn’t defined,
the default is /bin/sh. On MS-DOS, if SHELL not set, the value of
COMSPEC is used; see also the MAKESHELL variable, earlier in this list.

SUFFIXES The default list of suffixes, before make reads and processes makefiles.

.VARIABLES A list of all variables defined in all makefiles read up to the point that
this variable is referenced.

VPATH Specifies a list of directories to search for prerequisites when not
found in the current directory. Directories in the list should be sepa-
rated with spaces or colons.

Text Manipulation with Macros and Functions

Standard versions of make provide a limited text manipulation facility:

$(macro:si=s2)
Evaluates to the current definition of $(macro), after substituting the string s2
for every occurrence of s1 that occurs either immediately before a blank or
tab, or at the end of the macro definition.

GNU make supports this for compatibility with Unix make and the POSIX stan-
dard. However, GNU make goes far beyond simple text substitution, providing a
host of functions for text manipulation. The following list provides a brief descrip-
tion of each function.

$(addprefix prefix, names ...)
Generates a new list, created by prepending prefix to each of the names.

$(addsuffix suffix, names ...)
Generates a new list, created by appending suffix to each of the names.

$(basename names ...)
Returns a list of the basename of each of the names. The basename is the text
up to but not including the final period.

$(call var, param, ...)
The call function allows you to treat the value of a variable as a procedure.
var is the name of a variable, not a variable reference. The params are
assigned to temporary variables that may be referenced as $(1), $(2), and so
on. $(0) will be the name of the variable. The value of var should reference
the temporary values. The result of call is the result of evaluating var in this
way. If var names a built-in function, that function is always called, even if a

758 | (Chapter16: The GNU make Utility

make variable of the same name exists. Finally, call may be used recursively;
each invocation gets its own $(1), $(2), and so on.

$(dir names ...)
Returns a list of the directory part of each of the names. The directory part is
all text, up to and including the final / character. If there is no /, the two
characters ./ are used.

$(error text ...)
Causes make to produce a fatal error message consisting of text.

$(filter pattern ..., text)
Chooses the words in text that match any pattern. Patterns are written using
%, as for the patsubst function.

$(filter-out pattern ..., text)
Like filter, but selects the words that do not match the patterns.

$(findstring find, text)
Searches text for an instance of find. If found, the result is find; otherwise, it’s
the empty string.

$(firstword names ...)
Returns the first word in names.

$(foreach var, words, text)
This function is similar to the for loop in the shell. It expands var and words,
first. The result of expanding var names a macro. make then loops, setting var
to each word in words, and then evaluating text. The result is the concatena-
tion of all the iterations. The text should contain a reference to the variable
for this to work correctly.

If var is defined before the foreach is evaluated, it maintains the same value it
had after the evaluation. If it was undefined before the foreach, it remains
undefined afterwords. In effect, foreach creates a temporary, private variable
named var.

$(if condition, then-text[, else-text])
The condition is evaluated. If, after removing leading and trailing whitespace,
the result is not empty, the condition is considered to be true, and the result
of if is the expansion of the then-text. Otherwise, the condition is considered
to be false, and the result is the expansion of else-text, if any. If there’s no
else-text, then a false condition produces the empty string. Only one or the
other of then-text and else-text is evaluated.

$(join list1, 1ist2)
Produces a new list where the first element is the concatenation of the first
elements in list] and list2, the second element is the concatenation of the
second elements in list]1 and list2, and so on.

$(notdir names ...)
Returns a list of the nondirectory part of each of the names. The nondirec-
tory part is all the text after the final /, if any. If not, it’s the entire name.

Macros | 759

$(origin variable)
Returns a string describing the origin of variable. Here, variable is a variable
name (foo), not a variable reference ($(foo)). Possible return values are one of
the following:

automatic The variable is an automatic variable for use in the
commands of rules, such as $* and $@.

command line The variable was defined on the command line.

default The variable is one of those defined by make’s built-in
rules, such as CC.

environment The variable was defined in the environment, and -e

was not used.
environment override The variable was defined in the environment, and -e

was used.

file The variable was defined in a makefile.

override The variable was defined with an override command.
See the earlier section “Overriding command-line
macros.”

undefined The variable was never given a value.

$(patsubst pattern, replacement, text)
Replaces words in text that match pattern with replacement. The pattern
should use a % as a wildcard character. In replacement, a % acts as the place-
holder for the text that matched the % in pattern. This is a general form of
string substitution. For example, the traditional 0BJS = $(SRCS:.c=.0) could
instead be written 0BJS = $(patsubst %.c, %.0, $(SRCS)).

$(shell command)
Runs the shell command command and returns the output. make converts
newlines in the output into spaces and removes trailing newlines. This is
similar to *..." in the shell.

$(sort list)
Returns a sorted copy of the words in [list, with duplicates removed. Each
word is separated from the next by a single space.

$(subst from, to, text)
Replaces every instance of from in text with to.

$(suffix names ...)
Returns a list of the suffixes of each name. The suffix is the final period and
any following text. Returns an empty string for a name without a period.

$(strip string)
Removes leading and trailing whitespace from string and converts internal
runs of whitespace into single spaces. This is especially useful in conjunction
with conditionals.

$(warning text ...)
Causes make to produce a warning message consisting of text.
$(wildcard pattern ...)
Creates a space-separated list of filenames that match the shell pattern
pattern. (Note! Not a make-style % pattern.)
$(word n, text)
Returns the nth word of text, counting from one.

760 | Chapter16: The GNU make Utility

$(wordlist start, end, text)
Creates a new list consisting of the words start to end in text. Counting starts
at one.

$(words text)
Returns the number of words in text.

Special Target Names

.DEFAULT: Commands associated with this target are executed if make
can’t find any makefile entries or suffix rules with which to
build a requested target.

.DELETE_ON_ERROR: If this target appears in a makefile, then for any target that
make is rebuilding, if its command(s) exit with a nonzero
status, make deletes the target.

.EXPORT_ALL_VARIABLES: The mere existence of this target causes make to export all
variables to child processes.

. IGNORE: With prerequisites, ignore problems just for those files. For
historical compatibility, with no prerequisites, ignore error
returns from all commands. This is the same as the -1 option.

. INTERMEDIATE: Prerequisites for this target are treated as intermediate files,
even if they are mentioned explicitly in other rules. (An
intermediate file is one that needs to be built “along the
way” to the real target. For example, making a . c file from a
.y file, in order to create a .0 object file. The .c file is an
intermediate file.) This prevents them from being re-
created, unless one of their prerequisites is out of date.

.LOW_RESOLUTION_TIME: make notes that prerequisites for this target are updated by
commands that only create low resolution timestamps (one
second granularity). For such targets, if their modification
time starts at the same second as the modification time of a
prerequisite, make does not try to compare the sub-second
time values, and does not treat the file as being out of date.

.NOTPARALLEL: Prerequisites for this target are ignored. Its existence in a
makefile overrides any -j option, forcing all commands to
run serially. Recursive make invocations may still run jobs in
parallel, unless their makefiles also contain this target.

.POSIX: When this target exists, changing the MAKEOVERRIDES vari-
able does not affect the MAKEFLAGS variable. (This is a rather
specialized case.) This target also disables the special treat-
ment of $$@, $$(@D), and $$(@F).

.PHONY: Prerequisites for this target are marked as “phony.” Le.,
make always executes their rules, even if a file by the same
name exists.

.PRECIOUS: Files you specify for this target are not removed when you
send a signal (such as interrupt) that aborts make, or when a
command line in your makefile returns an error.

. SECONDARY : Prerequisites of this target are treated like intermediate files,
except that they are never automatically removed. With no
prerequisites, all targets are treated as secondary.

.SILENT: When given prerequisites, make will not print the
commands for those prerequisites when they are rebuilt.
Otherwise, for historical compatibility, when this target has
no prerequisites, make executes all commands silently,
which is the same as the -s option.

.SUFFIXES: Suffixes associated with this target are meaningful in suffix
rules. If no suffixes are listed, the existing suffix rules are
effectively “turned off.”

Special Target Names | 761

Writing Command Lines

Writing good, portable makefile files is a bit of an art. Skill comes with practice
and experience. Here are some tips to get you started:

Depending upon your locale, naming your file Makefile instead of makefile
can cause it to be listed first with 1s. This makes it easier to find in a direc-
tory with many files.

Remember that command lines must start with a leading tab character. You
cannot just indent the line with spaces, even eight spaces. If you use spaces,
make exits with an unhelpful message about a “missing separator.”

Remember that $ is special to make. To get a literal $ into your command lines,
use $$. This is particularly important if you want to access an environment
variable that isn’t a make macro. Also, if you wish to use the shell’s $$ for the
current process ID, you have to type it as $$$$.

Write multiline shell statements, such as shell conditionals and loops, with
trailing semicolons and a trailing backslash:

if [-f specfile] ; then \

.50\

else \
v 5\

fi
Note that the shell keywords then and else don’t need the semicolon. (What
happens is that make passes the backslashes and the newlines to the shell. The
escaped newlines are not syntactically important, so the semicolons are
needed to separate the different parts of the command. This can be confus-
ing. If you use a semicolon where you would normally put a newline in a shell
script, things should work correctly.)

Remember that each line is run in a separate shell. This means that com-
mands that change the shell’s environment (such as cd) are ineffective across
multiple lines. The correct way to write such commands is to keep the com-
mands on the same line, separated with a semicolon. In the particular case of
cd, separate the commands with 8&& in case the subdirectory doesn’t exist or
can’t be changed to:

cd subdir && $(MAKE)

PATH=special-path-value ; export PATH ; $(MAKE)
For guaranteed portability, always set SHELL to /bin/sh. Some versions of make

use whatever value is in the environment for SHELL, unless it is explicitly set in
the makefile.

Use macros for standard commands. make already helps out with this, provid-
ing macros such as $(CC), $(YACC), and so on.

When removing files, start your command line with -$(RM) instead of $(RM).
(The — causes make to ignore the exit status of the command.) This way, if the
file you were trying to remove doesn’t exist, and rm exits with an error, make
can keep going.

762

| Chapter16: The GNU make Utility

* When running subsidiary invocations of make, typically in subdirectories of
your main program tree, always use $(MAKE), and not make. Lines that contain
$(MAKE) are always executed, even if -n has been provided, allowing you to test
out a whole hierarchy of makefiles. This does not happen for lines that
invoke make directly.

* Often, it is convenient to organize a large software project into subprojects,
with each one having a subdirectory. The top-level makefile then just invokes
make in each subdirectory. Here’s the way to do it:

SUBDIRS = proj1 proj2 proj3

projects: $(SUBDIRS)
for i in $(SUBDIRS); \
do \
echo ====== Making in $$i ; \
(cd $$i && $(MAKE) $(MAKEFLAGS) $@) ; \
done

Writing Command Lines | 763

